This Page provides information about 5G NR Link budget calculator. Π‘alculator allows to calculate the maximum Link budget of 5G NR network depending on Cell Radius, gNodeB/UT configuration, Propagation model, attenuations, etc.

You can calculate the Link budget (Signal level at receiver) and then compare it with Rx Reception sensitivity. Then you will understand Radio Channel Status (Pass or Fail) and Cell Radius.

The calculation is based on the 3GPP 38.901 standard. Approximately Link budget of 5G NR can be calculated using the formula:

**Update1: User interface and Channel Model Fix**. **Add Outdoor/Indoor mode**

**Update2: Fix Transmit power parameter for more accuracy calculation**

Found a mistake? Contact us!

Was this information helpful?

Share with colleagues or use:

**5G NR:** 5G NR Throughput calculator, 5G NR Link budget calculator, 5G NR ARFCN Calculator, 5G NR GSCN Calculator, 5G NR TBS Calculator, Spectral Efficiency 5G NR calculator, 5G Neighbor planning calculator, QoS for 5G NR

**4G LTE:** 4G LTE Throughput calculator, 4G LTE Link budget calculator, 4G LTE EARFCN calculator, 4G LTE RS RE Power calculator, 4G LTE Users (CCE) calculator, 4G Neighbor planning calculator, QoS for 4G LTE

**NB-IoT:** NB-IoT Link budget calculator

Great tools!!! Congrats!

Are there more information how to derive the reception sencitivities for gNB and UT?

I mean the particulary the noise figures and the demodulation thresholds (SINR) for the different Modulation schemes?

Regards

Andy

Dear, Andy S.

You can calculate Receiver sensitivity like:

Receiver sensitivity=Node B (or UT) Noise figure,dB +Thermal noise,dB (for Subcarrier configuration, transmission bandwidth etc.) +SINR, dB

Noise figure(for NodeB and UT) and SINR -> vendor specific.

It is confidential information from equipment vendor (Nokia, Huawei etc). You should to ask them π Anyway

For example you can use SINR = -6 for the slowest modulation and coding schemes

And Noise figure=5

Regard

Dear Admin

Do you have formula for 5G Propagation Model (3GPP 38.901)?

I am very interesting with your calculator

Thank you

Dear, Yetiawali

You can download 3gpp file from here (click):

38.901 Propagation modelThen find formula for 5G Propagation Model at Table 7.4.1-1: Pathloss models (Page 25)

Regards

Thank for your fast response.

I found different formula for 5G LInk Budget like this.

Path loss (dB) = gNodeB transmit power (dBm) β 10 x log10 (subcarrier quantity) + gNodeB antenna gain (dBi) β gNodeB cable loss (dB) β penetration loss (dB) β foliage loss (dB) β body block loss (dB) β interference margin (dB) β rain/ice margin (dB) β slow fading margin (dB) β body block loss (dB) + UE antenna gain (dB) β Thermal noise power (dBm) β UE noise figure (dB) β demodulation threshold SINR (dB).

There are some parameter (Thermal noise power (dBm) β UE noise figure (dB) β demodulation threshold SINR (dB)) i can’t found above, do you have some articles about that parameter? Thank You

Dear, Yetiawali

Formula that you found is same that we use in our 5G NR Link budget calculator.

But in our calculation we use

Reception sensitivityfor gNodeB and UT.You can get

Reception sensitivityfor our calculator using this formula:Receiver sensitivity (dBm) = Noise figure (dB) + Thermal noise (dBm) + SINR (dB)

where:

Terminal noise = K (Boltzmann constant) x T (290K) x bandwidth*

*bandwidth depends on bit rate, which defines the number of resource blocks (Subcarrier Quantity)

Noise figure (vendor specific) depends on the frequency band,duplex separation and on the allocated bandwidth.

SINR (vendor specific), The value depends on the modulation and coding schemes, which again depend on the data rate and the number of resource blocks allocated

Example:

thermal noise gNodeB for 106 RB ( 20Mhz, 1272 Subcarrier Quantity) =-101 dBm

Noise figure = 4 dB

SINR =-7 (slowest modulation and coding schemes)

Receiver sensitivity gNodeB (dBm)= 4 -101 -7 = -104 dBm

Regards

Thank for your fast response and discussion

Dear Admin

Dou you have SINR table for 5G?

Thank You

Dear Yetiawali

SINR ->CQi->MCS is

confidential informationfor Vendors equipment ( Huawei, Nokia.. etc)…We dont have it. You should ask vendor

But anyway you can use this (As Is):

QPSk Spectral efficiency: 0.2344 – SINR: -6 dB

16QAM Spectral efficiency: 2.5703 -SINR 9 dB

64QAM Spectral efficiency: 5.1152 -SINR 21dB

256QAM Spectral efficiency: 7.4063 -SINR 35 dB

Regards

Thanks for all .

in my understanding, link budget exercise is supposed to respond to the question :

Given a desired receiver sensitivity,

what is the required transmit power to attain a desired range?

OR

what is the attainable range for a given transmit power?

i didn’t get the logic of calculation process in the above proposed methodology.

Many thanks.

Dear, Lotfi Jemli!

Logic of calculation process is simple

If you need to understand:

How many Base Stations ( gNodeB) do you need for 5G Coverage on territory? For any modulation

( for Example: QPSk Spectral efficiency: 0.2344 SINR: -6 dB, Throughtput ~ 6Mbit/s – 5Mhz, 1 layer, Area = 206 km^2 )

1. You need to get Equipment configuration from Vendor – Transmit power etc.

2. You should to calculate Reception sensitivity, dBm ~depend on SINR

3. You should to understand – is it Urban, Rural territory (for propogation model)… etc

and Area of territory in kilometers^2

4. You should to change Cell Radius befor Radio Channel Status = Pass (not Fail)

5. After this you get Cell Radius for your Calculation ( UL or DL)

6.When you have Cell Radius (R) You can get Coverage for One 5G Base station area S =pi *R^2

7. You can get number of gNodeB = (Area of territory in kilometers^2)/(Base station area S)

It will save you money for At the time of 5G network deployment π

You can mail to me oleg.vinogradov@5g-tools.com

If you have more questions

Regards

Many Thanks Mr Oleg. it’s clear

Dear Mr Oleg

I am very interesting with your calculator .

But i am still confuse about model propagation.

Could you give me examples how to calculate UMi (urban microcells) for Micro urban/dense urban with formula at 38.901 Propagation model

Thank for your attention

Hi, Great work but I have a question. For example if I have multiple bandwidth parts with different configurations then how can I do the link budget in this case?

Dear, Umar

Link Budget depend on many factors:

Main: frequency, bandwidth,Reception sensitivity (SINR) etc

For 5G network in your case you should to use smallest SINR=-6 dB ( Or sinr for your throughput KPI, maybe SINR 9….), smallest frequency, smallest bandwidth… with better configuration for throughtput.

This mean: if User can get service ( KPi for Dl throughput or UL throughput) Link budget is Ok….

You have many bandwidth parts, but if one of them will work ( smallest frequency… etc. ) User is OK

Regards

I cannot find the used formula or the slow fading values on the referenced 3GPP document. Where did you get it from?

Regards

Good to study

If I find throughput UL/DL per Modulation and MSC table how is formula

Dear, Arrtyv1!

MCS ( based on 3GPP 38.214 Table 5.1.3)

You should to use https://5g-tools.com/5g-nr-throughput-calculator/

Then you should to change Q(j)m modulation order and Rmax in 5g-nr-throughput-calculator (Value depends on the type of coding from 3GPP 38.214,38.212)

Where Rmax = (Target code Rate (MCS:3GPP 38.214 Table 5.1.3)) / (1024)

P.S. MSC depend on SINR… And you can get link budget for your throughput

QPSk Spectral efficiency: 0.2344 β SINR: -6 dB

16QAM Spectral efficiency: 2.5703 -SINR 9 dB

64QAM Spectral efficiency: 5.1152 -SINR 21dB

256QAM Spectral efficiency: 7.4063 -SINR 35 dB

Regards

How is find power at enodeB dBm (Top RRU) and

2MIMO per port(dBm)

4MIMOper port(dBm)

8MIMOper port(dBm)

32MIMOper port(dBm)

64MIMOper port(dBm)

Hello, i calculated pathlosses for 28 GHz for UMa and RMa, and i got larger distances in the case of UMa vs the case of RMa, using the same parameters, which doesnΒ΄t makes sense to me. iΒ΄m i missing something? thank you!

It was mistake in our calculator, we fixed it at the last update

Regards

Hello,

pathloss models only consider LOS. 3GPP defined pathloss models for NLOS. Could you include them here too?

There are fixed amount losses for NLOS in this webpage. Does this way fo calauclation match with values derived from 3GPP NLOS pathloss models?

Thanks

edit…

Dear, Jack!

Fix, At the last update we added NLOS

Regards

Thank you very for the reply.

I used RMa model to calculate path loss at 740MHz for distance from 20m to 1km. The pathloss curve follows exactly free space pathloss pattern but it’s always 0.6 ~ 0.7 dB better than free space path loss model. Is it expected? I thought free space pathloss model should give the smallest pathloss value for given frequency and distance. UMa also gives path loss better than free space up to the distance of 240m. is it also expected?

Thanks

It was mistake in our calculator, we fixed it at the last update

Please check

Regards

Many thanks Mr.Oleg this is very useful.

I am just confused about sub carrier quantity, is there a table for it?

Regards

Hamdi H

Dear, Horsni

Subcarrier Quantity (for TX power correction) = Number of used RB * Number of Subcarrier per RB

It is mean number of subcarrier that we use for transmission. We need it for TX power correction…

We added Subcarrier Quantity Auto-Calculation at the last update, you just need to add numbers of RB

Regards

God evening Mr Oleg,

I am wondering if you can help explaining more about the calculation of thermal noise and add an examlpe.

thank you in advance.

Kind Regards

Hamdi H

Dear, Hosni!

Terminal noise =-174+10log(“bandwidth” Hz), Bandwidth depend on number of RB.

Example for 1 RB Β΅:15kHz: -174+10*LOG10(180000) = -121,4472749 dB

Example for 2 RB Β΅:15kHz: 174+10*LOG10(360000) = -118,436975 dB

Regards

Hi Thanks for the tool.

Seems that you assign all tx power to a single channel/receiver. But I guess the real world is not like that, and only some portion of total bandwidth and power is assigned to a channel. The tool might be more useful to me if you can model with channel bandwidth calculating from subcarrier spacing and number of RBs.

I still appreciate today’s tool though.

Dear, El Psy Kongroo

We add it last update π Just Use

Regards

Update 1: We updated the user interface and Fix Channel Model. Add Outdoor/Indoor mode for calculation

If you have any problem with new interface, just inform us

Regards

5G-tools Team

plz how to get slow fading margin?There’s is something equation?

Regards

what is the bandwidth in thermal noise?

channel bandwidth?

Dear, Sarah

Yep, but “channel bandwidth” not completely correct. “Bandwidth of used RB” will be better.

For example: if you use BW:20MHz FR1 Β΅:15kHz. but only 2 RB ( not full 106 RB in 20 Mhz) for transmission, this mean that channel bandwidth=2(RB)*15000*12 =360000 Hz

Regards

Hi,

How can I have the coverage comparison between 5G frequency bands (eg. 3.5 GHz and 28 GHz) using this calculator?

Many thanks!

Dear, CEO

Just change

Centre frequencythen get largest cell radius where Radio Channel Status: PassFor example ( defaut parameters):

Urban UL 3410 Ghz Outdoor -> Cell Radius 350m

Urban UL 28000 Ghz Outdoor -> Cell Radius 115 m

Regards, Oleg

Hi

I need full link budget calcation formula, full path loss formula

Dear, Vijay Anand

You can download 3gpp file from here (click): 38.901 Propagation model

Then find formula for 5G Propagation Model at Table 7.4.1-1: Pathloss models (Page 25)

Regards

Transmit power

per Subcarrier, dBm how to calucalte

Dear, Vijay Anand

Transmit power per Subcarrier, dBm = 10*log10 (Transmit power.,mW /Subcarrier Quantity) or

Transmit power per Subcarrier, dBm = Transmit power. dBm -10*log10(Subcarrier Quantity)

Regards, Oleg

Dear Oleg,

I have a question regarding the path loss number estimated according to 3GPP TR 38.901. I used the following data:

Frequency β 24300 MHz

Cell radius β 180 meter

Base antenna height β 10 meter

UE antenna height β 1.5 meter

5G Propagation Model (3GPP 38.901): Urban Micro 3D-Umi LOS + NLOS

Path loss estimated by the calculator: 131.5 dB

Free space path loss estimated by the classical formula 10*LOG ((4 x Ο x d x f / c)^2) is 105.2 dB

Why so much difference 26.3 dB, itβs even not near?

Is path loss of the calculator equal free space path loss or itβs something else?

Dear, Samat!

I will try to answer on your question(Frequency β 24300 MHz,180 meter, Htx=10m,Hrx=1.5):

Free space path loss (ITU-R P.525-4)=10*LOG ((4 x Ο x d x f / c)^2) = 20*log10(d,km)+20*log10(f,Mhz)+32.44 = 105.2 dB

Urban Micro 3D-Umi LOS + NLOS path loss (3GPP TR 38.901.):

LOS: PL1 (10m < d(2d) < dbp (1458m)) = 32.4+21*log10(d,m)+20*log10(f,GHz) = 107.472 dB ( like Free space path loss, but some more π ) NLOS: PL =35.3*log10(d,m)+22.4+21.3*log(f,Ghz)-0.3*(Hrx-1.5)=131.5245331. (At NLos scanarion PL=Max (NlosPL, losPL)), 131>107

LOS result not interesting,

because its like Free space. For mobile better to use NLOS… So we use NLOS at our calculator like result

Regards,

Oleg V.

Hi,

Why there are 2 different path losses in your calculator (propagation Model PL and Full PL) and how come are they having a big difference in values? The reason I’m asking this question is, if I want to calculate the cell radius, the 2 values which are driven from different formulas should be very close. In other words, the PL which could be easily obtained from the given values of everything in the system such as TX, gains, losses and margins, should be very close to the one obtain by the propagation model formula in order to correlate them and then calculate the cell radius. stevenasr@hotmail.com

regards

Hi,

How did you calculate the Signal level at receiver? I’m trying the EIRP minus PL but not getting it.

Regards

Steve

Dear, Steve Nasr

Link Budget Received Signal = EIRP-PathlossPropogationModel-Penetrationloss-foliageloss-bodyloss-interference margin-rainicemargin-slowfading-penetrationloss-Attenuation

Regards, Oleg

Hi, Do you intend to add NR DL Power calculator (SSB and DMRS); I am interested to see the difference between 64T vs 32T MMIMO configuration

Dear, Adil!

Yes, I am planning to do that π

Regards, Oleg